Acidophilic methanotrophic communities from Sphagnum peat bogs.

نویسندگان

  • S N Dedysh
  • N S Panikov
  • J M Tiedje
چکیده

Highly enriched methanotrophic communities (> 25 serial transfers) were obtained from acidic ombrotrophic peat bogs from four boreal forest sites. The enrichment strategy involved using media conditions that were associated with the highest rates of methane uptake by the original peat samples, namely, the use of diluted mineral medium of low buffering capacity, moderate incubation temperature (20 degrees C), and pH values of 3 to 6. Enriched communities contained a mixture of rod-shaped bacteria arranged in aggregates with a minor contribution of Hyphomicrobium-like cells. The growth stoichiometry of isolates was characteristic of methanotrophic bacteria (CH4/O2/CO2 = 1:1.1:0.59), with an average apparent yield of 0.41 +/- 0.03 g of biomass C/g of CH4-C. DNA from each enrichment yielded a PCR product of the expected size with primers for both mmoX and mmoY genes of soluble methane monooxygenase. Two types of sequences were obtained for PCR-amplified fragments of mmoX. One of them exhibited high identity to the mmoX protein of the Methylocystis-Methylosinus group, whereas the other showed an equal level of divergence from both the Methylosinus-Methylocystis group and Methylococcus capsulatus (Bath) and formed a distinct branch. The pH optimum for growth and for CH4 uptake was 4.5 to 5.5, which is very similar to that for the optimum CH4 uptake observed in the original peat samples. These methanotrophs are moderate acidophiles rather than acidotolerant organisms, since their growth rate and methane uptake were much lower at neutral pH. The growth of the methanotrophic community was enhanced by using media with a very low salt content (20 to 200 mg/liter), more typical of their natural environment. All four enriched communities grew on N-free medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the tempe...

متن کامل

High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA

Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface pe...

متن کامل

Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses.

Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutc...

متن کامل

How Sphagnum bogs down other plants.

Recent research on the organo-chemical composition of Sphagnum and on the fate of its litter has further clarified how this plant builds acidic, nutrient-poor, cold and anoxic peat bogs. The bog environment helps Sphagnum to outcompete other plants for light. Its morphology, anatomy, physiology and composition make it an effective ecosystem engineer and at the same time benefit the plant in the...

متن کامل

Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses?

• Peat bogs have accumulated more atmospheric carbon (C) than any other terrestrial ecosystem today. Most of this C is associated with peat moss (Sphagnum) litter. Atmospheric nitrogen (N) deposition can decrease Sphagnum production, compromising the C sequestration capacity of peat bogs. The mechanisms underlying the reduced production are uncertain, necessitating multifactorial experiments. •...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 64 3  شماره 

صفحات  -

تاریخ انتشار 1998